1.
$$EOQ = \sqrt{\frac{2 DC_o}{C_h}}$$

 $D = 40,000$
 $C_o = 25
 $C_h = $10(.20) = 2
 $EOQ = \sqrt{\frac{2(40,000)($25)}{$2}}$

$$= \sqrt{1,000,000}$$

= 1000 units

Fast-Mart should order 1,000 units each time to minimize total annual variable costs.

•

3.
$$EOQ = \sqrt{\frac{2 DC_o}{C_h}}$$

D = 100,000
 $C_o = 100
 $C_h = $3.75(.10) = $.375$

$$EOQ = \sqrt{\frac{2(100,000)(\$100)}{\$.375}}$$
$$= \sqrt{53,333,333}$$
$$= 7,303 \text{ gallons}$$

Fill-er-Up should order 7,303 gallons at a time.

5.
$$C_h$$
 = .25 (price per barrel), v = price per barrel

 $C_{o} = 100 D = 10,000 barrels <u>At \$102 per barrel</u> $C_{h} = .25 ($102) = 25.5

$$EOQ = \sqrt{\frac{2(10,000)(\$100)}{\$25.5}}$$
$$= \sqrt{78,431.4}$$
$$= 280 \text{ barrels}$$

This is infeasible because 3000 barrels must be ordered to get the price of \$102 per barrel. Thus, we calculate total annual variable costs with an order of 3000 barrels.

Total annual variable costs

$$= \frac{Q}{2}C_{h} + \frac{D}{Q}C_{o} + Dv$$

$$= (3000/2)(\$25.5) + (10,000/3000)(\$100) + 10,000(\$102)$$

$$= \$38,250 + \$333.33 + \$1,020,000$$

$$= \$1,058,583.30$$

<u>At \$105 per barrel</u> C_h = .25(\$105) = \$26.25

$$EOQ = \sqrt{\frac{2(10,000)(\$100)}{\$26.25}}$$
$$= \sqrt{76,190.5}$$
$$= 276 \text{ barrels}$$

Because this is also infeasible, we calculate the total cost of ordering 1000 barrels at a time.

Total annual variable cost= (1000/2)(\$26.25) + (10,000/1000)(\$100) + 10,000(\$105)

= \$13,125 + \$1000 + \$1,050,000

= \$1,064,125

At \$110 per barrel C_h = .25(\$110) = \$27.5

$$EOQ = \sqrt{\frac{2(10,000)(\$100)}{\$27.50}}$$
$$= \sqrt{72727,27}$$

= 270 barrels

This quantity is feasible so we calculate total costs for ordering 270 barrels each time.

Total annual variable cost = (270/2)(\$27.50) + (10,000/270)(\$100) + 10,000(\$110) = \$3,712.5 + \$3,703.70 + \$1,100,000

= \$1,107,416.20

Order Quantity	Total Annual Variable Costs
3000	\$1,058,583.30
1000	1,064,125.00
270	1,107,416,20

The lowest cost if given by ordering 3000 barrels each time.

7. Cost of ordering EOQ quantities:

Total annual variable costs = (3849/2)(\$.00675) + (50,000/3849)(\$1) + 50,000(\$.027)

(order 3849) = \$12.99 + \$12.99 + 1350

= 1375.98

Cost of ordering one week's worth at a time:

1 week's worth of buns = 50,000/52 = 962 buns per week Holding cost, $C_{\rm h}$ = .25(\$.030) = \$.0075

Total annual variable costs = (962/2)(\$.0075) + (50,000/962)(\$1) + 50,000(\$.030)

= \$3.61 + \$51.98 + \$1500

= \$1555.59

With an order of a week's worth of buns, total annual variable costs increase \$179.60 or 13.05%.

9. Review interval of one week will produce an average order size of:

EOQ = .019(1000) = 19

Costs of ordering every 1.66 weeks:

Total annual variable costs = (32/2)(\$10) + (1000/32)(\$5)

= \$160 + \$156.25

= \$316.25

Costs of ordering every week:

Total annual variable costs = (19/2)(\$10) + (1000/19)(\$5) = \$95 + \$263.16 = \$358.16

Extra cost incurred equals \$41.91 per year or 13.25% over total annual cost of ordering EOQ quantities.

11. <u>Periodic review</u>:

Service level = 90%; z factor = 1.28
Safety stock = (1.28)50
= 64 tires

Continuous review:

13. a. Based on the original conditions,

$$EOQ = \sqrt{\frac{2 DC_o}{C_h}} = \sqrt{\frac{2(1,225)(\$50)}{.25(100)}} = 70$$

After the changes, the new EOQ will be:

$$\sqrt{\frac{2(1,225)(\$40)}{.20(100)}} = 70$$

Thus the changes have balanced out and EOQ did not change.

b. Total annual variable costs before the change will be:

= (70/2)(.25)(\$100) + (1,225/70)(\$50) = \$1,750

After the changes, the total annual variable costs become:

(70/2)(.20)(\$100) + (1,225/70)(\$40) = \$1,400

Thus although the EOQ has not changed, the result has been a decrease in total annual variable costs of \$350 (enough to pay for 3.5 sofas!).

15.

		Annual	Dollar-	
Item #	Value	Usage	usage	Rank
209	\$14.76	2,000	\$29,520	б
4914	4914 5.98		89,700	4
37	1.15	297,000	341,550	2
387	6.48	6,000	38,880	5
3290	2.17	6,000	13,020	9
235	75.00	300	22,500	7
48	23.95	7,000	167,650	3
576	4.32	5,000	21,600	8
14	932.00	1,000	932,000	1
		Total	\$1,656,420	

		Dollar-		Cumulative	
Item #	Rank	usage	% Total	Percent	Class
14	1	\$932,000	56.26	56.26	A
37	2	341,550	20.62	76.88	A
48	3	167,650	10.12	87.00	В
4914	4	89,700	5.42	92.42	В
387	5	38,880	2.35	94.77	С
209	б	29,520	1.78	96.55	C
235	7	22,500	1.36	97.91	С
576	8	21,600	1.30	99.21	C
3290	9	13,020	0.79	100.00	С

Arranged by Rank Order

Using the rule that about 30% of all items go in class B and 50% in class C we could assign item 387 to either B or C. However, its dollar-usage is much closer to that of the other class C items than to the class B items. Therefore, it has been put into class C.